US009361334B2

a2z United States Patent (10) Patent No.: US 9,361,334 B2
Abney, I1I et al. 45) Date of Patent: Jun. 7, 2016
(54) ADDRESSING CACHE COHERENCE IN OTHER PUBLICATIONS

UPDATES TO A SHARED DATABASE IN A
NETWORK ENVIRONMENT
(71) Applicant: CISCO TECHNOLOGY, INC., San
Jose, CA (US)
(72) Inventors: John Miller Abney, III, Bellaire, TX
(US); Saravanan Lakshmanan, Sugar
Land, TX (US)
(73) CISCO TECHNOLOGY, INC., San
Jose, CA (US)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 308 days.

@
(22)

Appl. No.: 13/975,039

Filed: Aug. 23,2013

(65) Prior Publication Data

US 2015/0058302 A1l Feb. 26, 2015

Int. CL.
GO6F 17/30
U.S. CL
CPC GO6F 17/30371 (2013.01)
Field of Classification Search

None

See application file for complete search history.

(1)

(52)

(2006.01)

(58)

(56) References Cited
U.S. PATENT DOCUMENTS

2003/0163439 Al* 8/2003 Hankin
2004/0224674 Al* 11/2004 O’Farrell

GO6F 17/30607
GO6F 17/30575
455/418

GO6F 17/30386
714/15

2013/0283096 Al* 10/2013 Baker

110(1) 10(2)
N hY

EclipseLink, Understanding EclipseLink, Release 2.4, Dec. 2012,
pp. 1-168.*

Kent, Cache Coherence in Distributed Systems, Dec. 1987, pp.
1-90.*

S. Lametti, “Cache Coherence Techniques,” Dec. 1, 2010, 39 pages;
http://www.di.unipi.it/~vannesch/SPA%202010-11/Silvia.pdf.
“Locking Tables and Databases,” Mar. 2004, 5 pages; http://publib.
boulder.ibm.com/infocenter/rbhelp/v6r3/index jsp?topic=%2Fcom.
ibm.redbrick.doc6.3%2Fwag%2Fwag80 htm.

Wikipedia, the free encyclopedia, “MSI Protocol,” [retrieved and
printed Jun. 30, 2013], 2 pages; http://en.wikipedia.org/wiki/MSI__
protocol.

* cited by examiner

Primary Examiner — Albert Phillips, 111
(74) Attorney, Agent, or Firm — Patent Capital Group

57 ABSTRACT

Example embodiments are provided that may include receiv-
ing a request to update a particular object based on a modified
object, where the particular object is one of a number of
objects in a shared database, and the request includes an
identification of one or more referenced objects and version
information of the one or more referenced objects. Embodi-
ments further include determining whether any of the refer-
enced objects is stale based on the version information, where
the particular object is not updated if any of the referenced
objects is stale. More specific embodiments include updating
the particular object if none of the referenced objects is stale.
In yet further embodiments, determining a referenced object
is stale is based on a comparison of a version identifier of the
referenced object and a version identifier of an object in the
shared database that corresponds to the referenced object.

24 Claims, 4 Drawing Sheets

100

110(N)
d

DISTRIBUTED

DISTRIBUTED

SERVER

DISTRIBUTED

VERSION
REPORTING
MODULE

VERSION

REPORTING

MODULE

VERSION
REPORTING
MODULE

<
114(1)
N

N
114(2)
& 1

N
14(N)
0 11209

[oo |||

CACHE

cacke |

RECALCULATION
MODULE

RECALCULATION | voe

MODULE

RECALCULATION
MODULE

7
113(1)

7
1132)

4
113(N)

[Processor |

[Processor |

[PROcESSOR |

N
119(1)
W 1180)

3

119(2)
) 1182

N
119(N)
M 11a

MEMORY
ELEMENT

MEMORY

ELEMENT

MEMORY
ELEMENT

130

122/{

VALIDATION MODULE

129 MEMORV ELEMENT

DATABASE

SERVER

126 120

U.S. Patent

Jun. 7, 2016 Sheet 1 of 4 US 9,361,334 B2
100
110(1) 110(2) 1 y(N)
DISTRIBUTED DISTRIBUTED DISTRIBUTED
SERVER SERVER SERVER
VERSION VERSION VERSION
REPORTING REPORTING REPORTING
MODULE MODULE MODULE
114(1) 11\2(1) 114(2) 11\2(2) 114(N) 112(,\')
\ \)

CACHE CACHE CACHE
RECALCULATION RECALCULATION| | . | [RECALCULATION
MODULE MODULE MODULE
4 / /

113(1) 113(2) 113(N)
PROCESSOR PROCESSOR PROCESSOR
119\(1) 11\8(1) 119\(2) 11\8(2) ”9\(“) 112(N)
MEMORY MEMORY MEMORY
ELEMENT ELEMENT ELEMENT

N
130
199 VALIDATION MODULE
DATABASE
1281 PROCESSOR SERVER
SHARED 120
DATABASE | -126 —
199 MEMORY ELEMENT |

FIG. 1

U.S. Patent Jun. 7, 2016 Sheet 2 of 4 US 9,361,334 B2
200

110(1) 120

\ /
DISTRIBUTED DATABASE

SERVER SERVER

SEND UPDATE REQUEST BASED ON MODIFIED
OBJECT AND REFERENCED OBJECTS _
2%
203

SEND ERROR INFORMATION FOR

REFERENCED OBJECTS THAT HAVE STALE DATA

DATA USED TO DERIVE FINAL
VALUE OF MODIFIED

ANY STALE

OBJECT?
YES

-t
had

/
204

SEND REQUEST FOR UP-TO-DATE VERSIONS

OF REFERENCED OBJECTS IDENTIFIED IN
ERROR INFORMATION AS STALE

(
206
SEND UP-TO-DATE VERSIONS OF
REQUESTED REFERENCED OBJECTS

A

A

(
208

SEND UPDATE REQUEST BASED ON RECALCULATED

OBJECT AND REFERENCED OBJECTS

(
210

Y

A

STORE FINAL
VALUE OF OBJECT
(MODIFIED OR
RECALCULATED)

211

FIG. 2

U.S. Patent Jun. 7, 2016 Sheet 3 of 4 US 9,361,334 B2

300

(_ START)

Y

302 SERVER PERFORMS MODIFICATION
™ OF OBJECT BASED ON ONE OR
MORE REFERENCED OBJECTS

Y
IDENTIFY REFERENCED OBJECTS
306-"| USED TO DERIVE MODIFIED OBJECT

Y
SEND REQUEST TO
308" UPDATE SHARED DATABASE

A

C END)
FIG. 3

500

(START)

Y
RECEIVE ERROR INFORMATION INDICATING 502

STALE DATA WAS DETECTED IN REFERENCED -

OBJECTS USED TO DERIVE MODIFIED OBJECT

Y
REQUEST UP-TO-DATE VERSION OF EACH | ~504
REFERENCED OBJECT CONTAINING STALE DATA

Y
RECEIVE UP-TO-DATE VERSIONS OF REFERENCED OBJECTS |~_ 506

Y
INITIATE RECALCULATION OF MODIFIED OBJECTS
USING UP-TO-DATE VERSIONS OF REFERENCED OBJECTS [-508

A

(EnD)
FIG. 5

U.S. Patent Jun. 7, 2016 Sheet 4 of 4 US 9,361,334 B2

400

402 RECEIVE REQUEST TO UPDATE
™ SHARED DATABASE BASED ON MODIFIED
OBJECT AND REFERENCED OBJECTS

!

404~ DETERMINE WHETHER REFERENCED
OBJECTS CONTAIN STALE DATA

DO ANY
REFERENCED OBJECTS
CONTAIN STALE
DATA?

NO

Y

SEND ERROR INFORMATION AND STORE FINAL VALUE
408" REQUEST RECALCULATION WITH OF OBJECT (MODIFIED ~C410
UP-TO-DATE REFERENCED OBJECTS OR RECALCULATED)
END

FIG. 4

US 9,361,334 B2

1
ADDRESSING CACHE COHERENCE IN
UPDATES TO A SHARED DATABASE IN A
NETWORK ENVIRONMENT

TECHNICAL FIELD

This disclosure relates in general to the field of data integ-
rity in a network environment and, in particular, to techniques
that address cache coherence in updates to a shared database.

BACKGROUND

Enterprises and other entities have become increasingly
reliant upon data centers to provide network services needed
to conduct business or other desired activities. Data center
operators often attempt to increase efficiency and reduce
costs by implementing information technology (IT) process
automation platforms. These platform installations are typi-
cally composed of multiple network elements, such as servers
that perform various activities to provide desired services.
Dataused by these network elements for their operations may
be based on a single authoritative copy of the data, for
example, in a shared database. Since modifications to the data
can occur on multiple network elements, however, caches in
the network elements that include a copy of the data may have
different states. With the increasing dependence on data cen-
ters, it is important to maintain cache coherence between
network elements in a given platform so that consistent
results are achieved.

BRIEF DESCRIPTION OF THE DRAWINGS

To provide a more complete understanding of the present
disclosure and features and advantages thereof, reference is
made to the following description, taken in conjunction with
the accompanying figures, wherein like reference numerals
represent like parts, in which:

FIG. 1 is a simplified block diagram of a communication
system for providing cache coherence in a network environ-
ment according to at least one embodiment;

FIG. 2 is a simplified interaction diagram illustrating pos-
sible interactions in the communication system according to
at least one embodiment;

FIG. 3 is a flow diagram illustrating possible activities
associated with a distributed server of the communication
system according to at least one embodiment;

FIG. 4 is a flow diagram illustrating possible activities
associated with a database server of the communication sys-
tem according to at least one embodiment; and

FIG. 5 is a flow diagram illustrating possible further activi-
ties associated with a distributed server of the communication
system according to at least one embodiment.

DETAILED DESCRIPTION OF EMBODIMENTS

Overview

A method is provided in one example and includes receiv-
ing a request to update a particular object based on a modified
object. The particular object is one of a number of objects in
a shared database and the request includes an identification of
one or more referenced objects. The request also includes
version information of the one or more referenced objects.
The method further includes determining whether any one of
the referenced objects is stale based on the version informa-
tion, and the particular object is not updated if any one of the
referenced objects is stale.

10

15

20

25

30

35

40

45

50

55

60

65

2

This and other embodiments can optionally include the
following features. The modified object can be derived, at
least in part, based on the one or more referenced objects. The
method can include updating the particular object in the
shared database based on the modified object if none of the
referenced objects is stale. The version information can
include a version identifier of a referenced object. The deter-
mination that the referenced object is stale can be based on a
comparison of the version identifier of the referenced object
and a version identifier of an object in the shared database that
corresponds to the referenced object. The method can further
include providing error information if at least one of the
referenced objects is stale, and the error information can
include an identification of the at least one referenced object
that is stale. The error information can include version infor-
mation associated with at least one object in the shared data-
base, where the at least one object in the shared database
corresponds to the at least one referenced object identified in
the error information as stale. The update request can be
received from a distributed server.

Another method is provided in another example and
includes sending a request to update a shared database based
on a modified object derived using one or more referenced
objects, receiving error information indicating at least one of
the referenced objects is stale, requesting an up-to-date ver-
sion of the at least one referenced object, and sending a
second request to update the shared database based on a
second modified object derived using at least the current
version of the at least one referenced object.

This and other embodiments can optionally include the
following features. The method can include receiving a new
version identifier of the second modified object, and associ-
ating the new version identifier with the second modified
object in a local cache of a distributed server. The request to
update the shared database can include an identification of the
one or more referenced objects and version information asso-
ciated with the one or more referenced objects. The version
information can include one or more version identifiers asso-
ciated respectively with the one or more referenced objects.
The error information can include an identification of the at
least one referenced object that is stale and version informa-
tion of at least one object in the shared database, where the at
least one object in the shared database corresponds to the at
least one referenced object that is stale.

Example Embodiments

FIG. 1 is a simplified block diagram of a communication
system 100 for providing cache coherence in updates to a
shared database. Communication system 100 can include
multiple distributed servers 110(1), 110(2), through 110(N)
and a shared database 126 of a database server 120. Distrib-
uted servers 110(1)-(N) and database server 120 can commu-
nicate via a network 130. In at least one embodiment, distrib-
uted servers 110(1)-(N) represent distinct computing devices
that operate as a single computing system and are intercon-
nected via network 130. Distributed servers 110(1)-(N) can
include respective version reporting modules 112(1)-(N),
recalculation modules 113(1)-(N), and caches 114(1)-(N).
Distributed servers 110(1)-(N) can also include suitable hard-
ware such as respective processors 118(1)-(N) and memory
elements 119(1)-(N). Shared database 126 may be provided
in database server 120, which can include a validation module
122 and appropriate hardware such as a processor 128 and a
memory element 129. In some instances, one or more of
distributed servers 110(1)-(N) and database server 120 can be
included within a system of computing devices, such as a data

US 9,361,334 B2

3

center. Further, an I'T process automation platform may be
implemented in the system of computing devices in which a
shared repository, such as shared database 126, retains an
authoritative copy of data used by distributed servers 110(1)-
(N) to perform their operations.

Elements of FIG. 1 may be coupled to one another through
one or more interfaces employing any suitable connections
(wired or wireless), which provide viable pathways for net-
work communications. Additionally, one or more of these
elements of FIG. 1 may be combined or removed from the
architecture based on particular configuration needs. For ease
of illustration where appropriate, a single distributed server
(e.g., distributed server 110(1)) and its various components
may be described and referenced herein with respect to vari-
ous embodiments, although such descriptions and references
can be applicable to the other distributed servers (e.g., dis-
tributed servers 110(2)-(N)) and their components, shown in
FIG. 1.

For purposes of illustrating the techniques of communica-
tion system 100, it is important to understand the activities
that may be present in a given network, such as network 130
shown in FIG. 1. The following foundational information
may be viewed as a basis from which the present disclosure
may be properly explained. Such information is offered for
purposes of explanation only and, accordingly, should not be
construed in any way to limit the broad scope of the present
disclosure and its potential applications.

Data centers often implement process automation plat-
forms that enable automation of information technology (IT)
workflows to deliver defined services. Generally, such imple-
mentations involve multiple servers and a database system
that offers a shared database to the servers. The servers are
often highly distributed and perform different types of work
and orchestrations executing [T automation workflows. Each
server maintains a local cache of data that is necessary for its
operation. Consequently, this system of computing devices
can have multiple caches and one single, authoritative data-
base (also referred to herein as a ‘shared database’). The data
in the multiple caches is based on the data in the shared
database.

Because modifications can occur on any server, at any
given time each server could have at least a slightly different
cache state. Typically, local caches are write-through caches.
Accordingly, when a modification to a data value originates
on a particular server, the server modifies the value in the
shared database in addition to the value in its own cache. The
changes to the shared database propagate to other servers over
time, as needed, to maintain cache coherence. The term
‘cache coherence’ refers to the state of consistency between
separate caches. It is desirable to maintain cache coherence in
the system, at least in part, to prevent inconsistent results that
could occur when servers perform workflows with stale data.

Challenges persist in maintaining cache coherence and the
integrity of a shared database. One challenge involves han-
dling modifications in a safe manner. For example, if a value
of an object is modified using stale data, then the resulting
modified value may be incorrect. By way of illustration,
assume A, B, and C are objects such as variables in a shared
database. Also assume a particular server modifies the value
of C using the equation C=A+B. If either or both of the values
of A and B are stale in the server’s cache (i.e. not consistent
with the values of A and B in the shared database), then the
resulting modified value of C may be incorrect. An incorrect
result could potentially lead to undesirable or even dangerous
results, depending on the particular services being affected.
Thus, cache coherence is desirable to enable modifications to

10

15

20

25

30

40

45

55

60

65

4

data values (e.g., C in the previous example) using the most
current versions of referenced data values (e.g., A and B inthe
previous example).

In multi-core computer processing unit (CPU) systems and
multi-CPU systems, cache coherency protocols may main-
tain consistency using intra-cache buses. These buses can
enable visibility into which cache entries are valid or invalid.
With distributed servers, however, synchronization via an
intra-cache bus architecture is not practicable and, in many
cases, not feasible. Communication on a single piece of hard-
ware, such as multi-core CPU or multi-CPU systems can be
tightly coordinated and communication can occur almost
simultaneously with data modifications. In a distributed sys-
tem, however, there is looser coordination, and communica-
tion between servers and a shared database may be delayed
relative to data modifications by the servers. Thus, distributed
caches may be unable to maintain a tight coordination. Con-
sequently, a cache coherence protocol in a distributed archi-
tecture is needed to accommodate scenarios in which updates
to a shared database may be attempted with stale data, and in
which an authoritative copy of the data is maintained on the
shared database.

In accordance with one example implementation, commu-
nication system 100 can resolve the aforementioned issues
associated with cache coherence between distributed servers’
caches and a shared database. Communication system 100
uses a versioning scheme to cross reference versions of cer-
tain data in the distributed servers’ caches with versions of
corresponding data in the shared database. More specifically,
communication system 100 provides a shared database server
that can preserve the integrity of a shared database in a single
transaction when a particular distributed server requests an
update (e.g., a write action, etc.) to the shared database based
on a modified object. In the transaction, the database server
can determine whether any stale data was used by the request-
ing server to derive a final value of the modified object, and
can take appropriate action based on the result. In order to
enable this determination, the requesting server provides the
database server with an identification of objects that were
referenced (referred to herein as ‘referenced objects’) when
deriving the final value of the modified object, and also pro-
vides version information associated with the referenced
objects. The version information enables the database server
to determine whether any one of the referenced objects was
stale when the final value was derived. If stale data was not
used to derive the final value of the object, then the final value
can be written to the shared database. If stale data was used,
however, then the database server can respond to the request-
ing server with error information indicating which referenced
objects were out-of-date when the final value was derived.
Thus, by including version information as part of each update
request to a shared database, erroneous updates to shared data
can be prevented.

As used herein, a ‘modified object’ is intended to mean an
object with a final value derived by a distributed server, where
the modified object is a new version of a corresponding object
stored in a shared database. A ‘referenced object’ is an object
used, alone or in combination with one or more other objects,
to derive the final value of a modified object. A referenced
object can be obtained from a cache of the distributed server
and corresponds to an object stored in the shared database. A
modified object may be ‘derived’ by calculating, computing,
formulating, building, constructing, estimating, etc. a final
value based, at least in part, on one or more referenced
objects.

US 9,361,334 B2

5

Turning to the infrastructure of FIG. 1, communication
system 100 is illustrated in accordance with at least one
embodiment. Generally, communication system 100 can be
implemented in any type or topology of networks. Network
130 represents a series of points or nodes of interconnected
communication paths for receiving and transmitting packets
of'information that propagate through communication system
100. This network offers a communicative interface between
nodes, and in at least one embodiment, may be configured as
a local area network (LAN). Teachings of embodiments dis-
closed herein, however, can be extended to other types of
networks including any virtual local area network (VLAN),
wide area network (WAN), wireless local area network
(WLAN), metropolitan area network (MAN), Intranet, Extra-
net, virtual private network (VPN), and any other appropriate
architecture that facilitates communications in a network
environment, or any suitable combination thereof.

In communication system 100, network traffic, which is
inclusive of packets, frames, signals, data, etc., can be sent
and received according to any suitable communication mes-
saging protocols. Suitable communication messaging proto-
cols can include a multi-layered scheme such as Open Sys-
tems Interconnection (OSI) model, or any derivations or
variants thereof (e.g., Transmission Control Protocol/Internet
Protocol (TCP/IP), user datagram protocol/IP (UDP/IP)). A
packet is a unit of data that can be routed between a source
node and a destination node on a packet switched network. A
packet can include a source network address and a destination
network address. These network addresses can be Internet
Protocol (IP) addresses in a TCP/IP messaging protocol in at
least one embodiment. The term ‘data’ as used herein, refers
to any type of binary, numeric, voice, video, textual, or script
data, or any type of source or object code, or any other suitable
information in any appropriate format that may be commu-
nicated from one point to another in electronic devices and/or
networks. Additionally, messages, requests (e.g., database
update requests, read requests, write requests, etc.),
responses, and queries are forms of network traffic, and there-
fore, may comprise packets, frames, signals, data, etc.

In at least one embodiment, distributed servers 110(1),
110(2), through 110(N), and database server 120 are network
elements, which can be nodes on one or more networks, such
as network 130. As use herein, the term ‘network element’ is
meant to encompass network appliances, servers, routers,
switches, gateways, bridges, load balancers, processors,
modules, or any other suitable device, apparatus, component,
or element operable to exchange information in a network
environment. Network elements may include any suitable
hardware, software, firmware, components, or modules that
facilitate the operations thereof, as well as suitable interfaces
for receiving, transmitting, and/or otherwise communicating
data or information in a network environment. This may be
inclusive of appropriate algorithms and communication pro-
tocols that allow for the effective exchange of data or elec-
tronic information.

In regards to the internal structure associated with commu-
nication system 100, distributed servers 110(1)-(N) and data-
base server 120 can each include one or more memory ele-
ments (e.g., memory elements 119(1)-(N), 129) for storing
information to be used in the operations outlined herein.
Distributed servers 110(1)-(N) and database server 120 can
keep information in any suitable memory element (e.g., ran-
dom access memory (RAM), read-only memory (ROM),
erasable programmable ROM (EPROM), electrically eras-
able programmable ROM (EEPROM), application specific
integrated circuit (ASIC), etc.), software, hardware, firm-
ware, or in any other suitable component, device, or element

10

15

20

25

30

35

40

45

50

55

60

65

6

where appropriate and based on particular needs. Any of the
memory items discussed herein (e.g., memory elements 119
(1)-(N), 129) should be construed as being encompassed
within the broad term ‘memory element.” Moreover, the infor-
mation being used, tracked, sent, or received in communica-
tion system 100 could be stored in various storage options
(e.g., caches 114(1)-(N), shared database 126), which could
be provided in any suitable form such as a database, register,
queue, table, cache, list, or other storage structure, all of
which can be referenced at any suitable timeframe. Any such
storage options (e.g., caches 114(1)-(N), shared database
126) should be construed as being encompassed within the
broad term ‘memory element’ as used herein.

In certain example implementations, the functions outlined
herein may be implemented by logic encoded in one or more
tangible media (e.g., embedded logic provided in an applica-
tion specific integrated circuit (ASIC), digital signal proces-
sor (DSP) instructions, software (potentially inclusive of
object code and source code) to be executed by a processor, or
other similar machine, etc.), which may be inclusive of non-
transitory computer-readable media. In some of these
instances, memory elements can store data used for the opera-
tions described herein. This includes the memory elements
being able to store software, logic, code, or processor instruc-
tions that are executed to carry out the activities described
herein.

In an example implementation, network elements of com-
munication system 100, such as distributed servers 110(1)-
(N) and database server 120, may include software modules
(e.g., version reporting modules 112(1)-(N), recalculation
modules 113(1)-(N), validation module 122) to achieve, or to
foster, operations as outlined herein. These modules may be
suitably combined in any appropriate manner, which may be
based on particular configuration and/or provisioning needs.
In example embodiments, such operations may be carried out
by hardware, implemented externally to these elements, or
included in some other network device to achieve the
intended functionality. Furthermore, the modules can be
implemented as software, hardware, firmware, or any suitable
combination thereof. These elements may also include soft-
ware (or reciprocating software) that can coordinate with
other network elements in order to achieve the operations, as
outlined herein.

Additionally, distributed servers 110(1)-(N) and database
server 120 may each include one or more processors (e.g.,
processors 118(1)-(N), 128) that can execute software or an
algorithm to perform activities as discussed herein. A proces-
sor can execute any type of instructions associated with the
data to achieve the operations detailed herein. In one
example, the processors could transform an element or an
article (e.g., data) from one state or thing to another state or
thing. By way of example, the activities outlined herein may
be implemented with fixed logic or programmable logic (e.g.,
software/computer instructions executed by a processor) and
the elements identified herein could be some type of a pro-
grammable processor, programmable digital logic (e.g., a
field programmable gate array (FPGA), an EPROM, an
EEPROM) or an ASIC that includes digital logic, software,
code, electronic instructions, or any suitable combination
thereof. Any of the potential processing elements, modules,
and machines described herein should be construed as being
encompassed within the broad term ‘processor.’

Distributed servers 110(1)-(N) can maintain local caches
114(1)-(N) of data needed for their operations. The caches are
write-through caches in at least one embodiment. The con-
tents of caches 114(1)-(N) can be based off of shared database
126, which maintains the most current or up-to-date versions

US 9,361,334 B2

7

of objects used in communication system 100. As used
herein, an ‘object’ is intended to include any variable, collec-
tion of variables, or any other piece of data that is used in at
least one operation of one or more distributed servers 110(1)-
(N), and that can be stored in caches 114(1)-(N) and in shared
database 126. A variable can be a data item that is changeable
over time. Examples of variables can include, but are not
limited to, strings, numbers, booleans (e.g., bit representa-
tions indicating true/false, on/off, yes/no, etc.), date/time
information, rows (e.g., a row of data in a database-style
table), globally unique identifiers (GUIDs), tables (e.g., data-
base-style table), identities (e.g., a construct that represents a
user’s identity, a device’s identity, etc.), encrypted strings
(i.e., a string that has been encrypted and is readable when
explicitly decoded), ObjectReferences (i.e., reference or link-
age to other types of objects within the system such as targets,
users, etc., but does not contain a copy of the original object),
and variants (i.e., a variable having any of the above-refer-
enced types that can fluidly shift between them). An object
may include a single variable (e.g., any one of the above-
referenced variables) or a collection of variables (e.g., mul-
tiple ones of the above-referenced variables).

Distributed servers 110(1)-(N) can each include one or
more modules configured to maintain detailed version infor-
mation of objects in their local caches 114(1)-(N), to request
updates to shared database 126 based on a modified object
derived from one or more referenced objects, to communicate
version information of referenced objects to shared database
126, and to retrieve the most current versions of referenced
objects as needed. For ease of illustration, descriptions and
examples provided herein may reference, where appropriate,
distributed server 110(1) and its components (e.g., 112(1),
113(1),114(1), 118(1), and 119(1)), although it will be appar-
ent that such descriptions and examples can be applicable to
other distributed servers 110(2)-(N) and their components.

When performing an object modification, distributed
server 110(1) can communicate various pieces of information
to database server 120 in order to update shared database 126.
Distributed server 110(1) can provide database server 120
with the final value of the modified object. Additionally,
distributed server 110(1) can provide database server 120
with an identification of objects that were referenced when
deriving (e.g., calculating, computing, formulating, building,
constructing, estimating, etc.) the final value of the modified
object. The identification of referenced objects could include
variable names or any other suitable identifiers of the refer-
enced objects. Distributed server 110(1) can also provide
database server 120 with version information associated with
the referenced objects. The version information could include
individual version identifiers for each referenced object. In at
least one embodiment, the identification of referenced objects
and the version information provided to database server 120
may be provided in the form of a list of the referenced objects
and respective version identifiers. In at least one embodiment,
version reporting module 112(1) could perform one or more
operations to accomplish the communication of such infor-
mation from distributed server 110(1) to database server 120.
Both the modified object and the referenced objects may be
stored in local cache 114(1). The modified object, however,
may not be stored in local cache 114(1) until shared database
126 has been successfully updated with the modified object
and distributed server 110(1) has been notified to update its
cache 114(1). In addition, in at least one embodiment, version
identifiers associated with objects in local cache 114(1) may
also be stored in local cache 114(1) and linked to their respec-
tive objects.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

When distributed server 110(1) uses stale data to modify an
object and then attempts to update shared database 126 based
on the modified object, database server 120 can send a mes-
sage containing error information to distributed server 110
(1). The error information can inform distributed server 110
(1) that the update was not made and that the data used to
derive the modified object is stale. The term ‘stale data’ or
‘stale object’ is intended to mean an object with a value that is
out-of-date or not current. A value that is out-of-date or not
current is not synchronized with the authoritative database
(e.g., shared database 126). This may be determined when a
corresponding object in shared database 126 is associated
with a newer version identifier than the stale object’s version
identifier.

Recalculation module 113(1) can be configured to receive
error information from database server 120 related to stale
objects used by distributed server 110(1). Recalculation mod-
ule 113(1) can refresh stale objects by fetching the up-to-date
versions of the objects, including the up-to-date version infor-
mation. The up-to-date objects and version information may
be fetched from shared database 126 in at least one embodi-
ment. A process may be initiated to derive (or ‘recalculate’)
the modified object using the up-to-date versions of the ref-
erenced objects. Once a new value for the modified object has
been derived, distributed server 110(1) can send another
update request to shared database 126 using the newest value
of'the modified object. In at least one embodiment, refreshing
stale data, recalculating a modified object, and retrying an
update to the shared database can avoid the possibility of an
update to the shared database being based on stale data. Thus,
transactional consistency can be achieved.

In at least one embodiment, shared database 126 can be
provisioned as part of database server 120. Shared database
126 can be configured as an authoritative database in com-
munication system 100. Accordingly, shared database 126 is
presumed to have the most current or up-to-date version of
each objectused in communication system 100. Inat least one
embodiment, shared database 126 also contains version infor-
mation associated with each object. Version information
could include a version identifier such as a whole number that
is incremented each time its associated object is updated or
otherwise modified. However, any other appropriate varia-
tions of a version identifier could also be used. Shared data-
base 126 can be implemented as a single database or as a
group of databases that collectively act as a single database in
communication system 100.

Validation module 122 can be configured to perform ver-
sion checks on data submitted by a server (e.g., distributed
servers 110(1)-(N)) when the server communicates a request
to update shared database 126 based on a modified object
derived from one or more referenced objects. Appropriate
action may also be taken based on the results. If it is deter-
mined that stale data was used to derive the new value of the
modified object, then shared database 126 is not updated with
the modified object. Instead, database server 120 can send
error information to the server that requested the update. In at
least one embodiment, the error information can identify each
referenced object that is out-of-date and needs to be
refreshed. The error information may also contain version
identifiers associated with the referenced objects that need to
be refreshed. The error information may additionally contain
version identifiers associated with objects in shared database
126 that correspond to the referenced objects that are out-of-
date. These version identifiers associated with objects in
shared database 126 indicate the most current or up-to-date
version of the referenced objects. In at least one embodiment,
the error information may be in the form of a list of the

US 9,361,334 B2

9

out-of-date referenced objects, along with the associated ver-
sion identifiers from the update request and the version iden-
tifiers from shared database 126.

By way of example, assume that a variable V has a value
that is modified by distributed server 110(1) according to the
following formula: V=V+Z, where Z is another variable.
Accordingly, the modified value of V will be a combination of
variable V’s previous value and the value of variable Z. The
server that performs the calculation, distributed server 110(1)
in this example scenario, can send a list of referenced objects
(i.e., Z and V) to database server 120, along with version
numbers of the referenced objects that were used. If the
referenced objects are up-to-date in the local cache of distrib-
uted server 110(1), then database server 120 can atomically
confirm that the referenced objects do not have versions in
shared database 126 that are newer than the versions indicated
in the message from distributed server 110(1). If any of the
referenced objects are determined to be stale, however, then
database server 120 can return error information to distrib-
uted server 110(1), indicating a set of one or more referenced
objects that are stale, and that can be refreshed by fetching
up-to-date versions from shared database 126. The server
may then fetch the up-to-date versions of the one or more
referenced objects, recalculate the value for the modified
object, and perform a new update attempt (e.g., via an update
request to shared database 126) based on the up-to-date data.

In FIG. 2, a simplified interaction diagram 200 illustrates
potential network communications between distributed
server 110(1) and database server 120, according to at least
one embodiment. At 202, distributed server 110(1) sends an
update request to database server 120 to update shared data-
base 126 based on a modified object and one or more refer-
enced objects. The update request can include the modified
object. The update request can also include an identification
of referenced objects and their respective version identifiers.
The identified referenced objects include objects used to
derive the final value of the modified object.

At 203, database server 120 determines whether any stale
data was used to derive the final value of the modified object.
This determination may be made by comparing the version
identifiers of the identified referenced objects and the version
identifiers of objects in shared database 126 that correspond
to the identified referenced objects. If all of the comparisons
pass, then the referenced objects used to derive the modified
object are determined to be up-to-date (i.e., not stale). In at
least one embodiment, the comparisons pass when the ver-
sion identifiers being compared are equivalent. When, at 203,
it is determined that stale data was not used to derive the final
value of the modified object, then at 211, the modified object
can be stored in shared database 126. In addition, database
server 120 may also generate a new version identifier for the
modified object. This new version identifier may be stored
with the modified object in shared database 126 and sent to
distributed server 110(1) to update the local cache of distrib-
uted server 110(1).

In another scenario, when it is determined at 203, that stale
data was used to derive the final value of the modified object,
then at 204, database server 120 can send error information to
distributed server 110(1). The error information can include
an identification of the referenced objects that were deter-
mined to have stale data and the version identifiers of those
referenced objects with stale data. Additionally, the error
information may include version identifiers associated with
objects in shared database 126 that correspond to the refer-
enced objects identified in the error information. When dis-
tributed server 110(1) receives the error information, at 206,
distributed server 110(1) sends a request for up-to-date ver-

10

15

20

25

30

35

40

45

50

55

60

65

10

sions of the referenced objects that were identified as stale in
the error information. At 208, database server 120 sends the
up-to-date versions of the requested referenced objects.

Once distributed server 110(1) receives the up-to-date ver-
sions of the requested referenced objects, distributed server
110(1) can recalculate the final value of the modified object.
When the recalculation is complete, at 210, distributed server
110(1) can send another update request with the modified
object produced from the recalculation, an identification of
the referenced objects used in the recalculation, and version
identifiers of each of the referenced objects used in the recal-
culation. Flow may continue at 203, where database server
120 can again determine whether any stale data was used to
derive the final value of the modified object. This processing
can continue until database server 120 determines that no
stale data was used to derive the modified object, and thus,
shared database 126 can be updated based on the modified
object.

Turning to FIG. 3, a flow diagram 300 illustrates example
activities that may be associated with embodiments of com-
munication system 100 to address cache coherence in updates
to a shared database. In at least one embodiment, a set of
operations corresponds to the activities of FIG. 3. In one
example, a server, such as distributed server 110(1), may
perform one or more operations of the set of operations. This
server may comprise means, including for example, proces-
sor 118(1), for performing such operations. In at least one
embodiment, version reporting module 112(1) of distributed
server 110(1) is configured to perform, when executed by a
processor, one or more operations of the set of operations.

At 302, a distributed server, such as distributed server
110(1), performs a modification of an object based, at least in
part, on one or more referenced objects. At 306, the distrib-
uted server can identify the referenced objects used to derive
the modified object. Each of the referenced objects may be
stored in the local cache of the distributed server and may
have its own associated version identifier. At 308, the distrib-
uted server may send a request to update a shared database,
such as shared database 126. The update request can include
afinal value of the modified object and an identification of the
referenced objects and their version information (e.g., respec-
tive version identifiers).

In FIG. 4, a flow diagram 400 illustrates example activities
that may be associated with embodiments of communication
system 100 for addressing cache coherence in updates to a
shared database. In at least one embodiment, a set of opera-
tions corresponds to the activities of FIG. 4. In one example,
a database server, such as database server 120, may perform
one or more operations of the set of operations. This database
server may comprise means, including for example, proces-
sor 128, for performing such operations. In at least one
embodiment, validation module 122 of database server 120 is
configured to perform, when executed by a processor, one or
more operations of the set of operations.

At block 402, the database server receives, from a server
such as distributed server 110(1), a request to update a shared
database based on a modified object and one or more refer-
enced objects used to derive the modified object. The update
request can include the modified object, an identification of
the one or more referenced objects, and version identifiers
associated with each of the referenced objects. At 404, data-
base server 120 determines whether the referenced objects
contain stale data. This may be determined by comparing the
version identifiers of the referenced objects and version iden-
tifiers of objects in the shared database that correspond to the
referenced objects. If the comparisons pass, then the refer-
enced objects do not contain stale data and are considered

US 9,361,334 B2

11

up-to-date. If none of the referenced objects contains stale
data, as determined at 406, then at 410, the modified object
may be used to update a corresponding object in the shared
database. The update can be performed by storing the final
value of the modified object in the shared database.

A new version identifier may also be stored in the shared
database in at least one embodiment. A new version identifier
may be generated based on the existing version identifier
associated with the corresponding object in the shared data-
base. The existing version identifier can be updated to indi-
cate the revision or modification of the object in the shared
database. In one example implementation, the version iden-
tifier can be a whole number and can be increased by a
predetermined amount each time the object is updated. For
example, the existing version identifier, which is associated
with the object to be updated in the shared database, may be
increased by a predetermined amount to obtain a new version
identifier. The new version identifier, along with the modified
object, can be stored in the shared database. The new version
identifier may also be sent to the distributed server to update
its local cache.

If any one of the comparisons between version identifiers
fails, however, then each referenced object corresponding to
afailed comparisonis stale. Ifit is determined, at 406, that any
one of the referenced objects identified by the distributed
server contains stale data, then at 408, the database server
may send (or otherwise provide) error information to the
distributed server. The error information may contain aniden-
tification of referenced objects that were determined to have
stale data, and may request the distributed server to perform a
recalculation with up-to-date data. The error information may
also contain the most current version identifiers for each of
the identified referenced objects to enable the distributed
server to fetch up-to-date versions of the referenced objects
that are identified in the error information.

Turning to FIG. 5, a flow diagram 500 illustrates example
activities that may be associated with embodiments of com-
munication system 100 to address cache coherence in updates
to a shared database. In at least one embodiment, a set of
operations corresponds to the activities of FIG. 5. In one
example, a server, such as distributed server 110(1), may
perform one or more operations of the set of operations. This
server may comprise means, including for example, proces-
sor 118(1), for performing such operations. In at least one
embodiment, recalculation module 113(1) of distributed
server 110(1) is configured to perform, when executed by a
processor, one or more operations of the set of operations.

At502, a server, such as distributed server 110(1), receives
error information from a database server, such as database
server 120, indicating that stale data was detected in one or
more of the referenced objects used to derive a modified
object. The error information may include an identification of
the referenced objects that were determined to have stale data.
At 504, the distributed server can request, from the shared
database, the up-to-date version of each referenced object
containing stale data. At 506, the distributed server may
receive the up-to-date versions of the requested referenced
objects from the shared database. At 508, the distributed
server may initiate a recalculation of the modified object
based on the up-to-date versions of the referenced objects. In
at least one embodiment, activities associated with FIG. 3
may be performed, in which the distributed server performs a
modification of the object based on one or more referenced
objects, referenced objects are identified, and a new requestto
update the shared database based on the recalculated modi-
fied object is sent to the database server.

20

25

30

40

45

60

12

In some instances, a first server (e.g., distributed server
110(1)) may need to request an update to the shared database
multiple times before the database server can perform the
requested update. Multiple update requests may be necessary,
for example, when a second server (e.g., distributed server
110(2)) sends an intervening request to update the shared
database while the first server (e.g., distributed server 110(1))
is refreshing referenced objects and recalculating a modified
object. Thus, the subsequent update request by the first server
is based on referenced objects that became stale due to the
update performed by the database server in response to the
intervening update request from the second server. By keep-
ing track of every referenced object each time an object is
modified, and including this information in update requests to
the shared database, the database server can detect each
update that is based on stale data and can preserve the integ-
rity of the shared database.

Note that with the example provided above, as well as
numerous other examples provided herein, interaction might
be described in terms of two, three, or four elements, mod-
ules, components, etc. However, this has been done for pur-
poses of clarity and example only. In certain cases, it may be
easier to describe one or more of the functionalities of a given
set of flows by only referencing a limited number of elements.
It should be appreciated that these elements, components,
modules, and/or the like (and their teachings) are readily
scalable and can accommodate a large number of such ele-
ments, modules, and components, etc., as well as more com-
plicated/sophisticated arrangements and configurations. In
addition, it should also be noted that these elements, modules
and/or components may alternatively be combined in any
suitable arrangements and configurations. Accordingly, the
examples provided should not limit the scope or inhibit the
broad teachings of communication system 100 as potentially
applied to a myriad of other architectures.

It is also important to note that the operations in the pre-
ceding flow diagrams illustrate only some of the possible
scenarios and patterns that may be executed in association
with addressing cache coherence in updates to a shared data-
base. Some of these operations may be deleted or removed
where appropriate, or may be modified or changed consider-
ably without departing from the scope of the present disclo-
sure. In addition, a number of these operations have been
described as being executed concurrently with, or in parallel
to, one or more additional operations. However, the timing of
these operations may be altered considerably. The preceding
operational flows have been offered for purposes of example
and discussion. Communication system 100 may provide
substantial flexibility in that any suitable arrangements, chro-
nologies, configurations, and timing mechanisms may be pro-
vided without departing from the teachings of the present
disclosure.

What is claimed is:
1. An apparatus, comprising:
at least one processor; and
at least one memory element comprising instructions that
when executed by the at least one processor cause the
apparatus to:
receive a request to update a particular object based on a
modified object, wherein the particular object is one
of a number of objects in a shared database, and
wherein the request includes an identification of one
ormore referenced objects and version information of
the one or more referenced objects; and
determine whether any one of the referenced objects is
stale based on the version information, wherein the

US 9,361,334 B2

13

particular object is updated based on the modified
object if none of the referenced objects is determined
to be stale.

2. The apparatus of claim 1, wherein

the particular object in the shared database is not updated

based on the modified object if any one of the referenced
objects is determined to be stale.

3. The apparatus of claim 1, wherein a determination that a
referenced object is stale is based on a comparison of a ver-
sion identifier of the referenced object and a version identifier
of an object in the shared database that corresponds to the
referenced object, wherein the version information includes
the version identifier of the referenced object.

4. The apparatus of claim 1, wherein the at least one
memory element comprises further instructions that when
executed by the at least one processor cause the apparatus to:

provide error information if at least one of the referenced

objects is stale, wherein the error information includes
an identification of the at least one referenced object that
is stale.

5. The apparatus of claim 4, wherein the error information
includes version information associated with at least one
object in the shared database, wherein the at least one object
in the shared database corresponds to the at least one refer-
enced object identified in the error information as stale.

6. The apparatus of claim 1, wherein the modified object
was derived, at least in part, based on the one or more refer-
enced objects.

7. The apparatus of claim 1, wherein the update request is
received from a distributed server.

8. A method, comprising:

receiving a request to update a particular object based on a

modified object, wherein the particular object is one of a
number of objects in a shared database, and wherein the
request includes an identification of one or more refer-
enced objects and version information of the one or more
referenced objects;

determining whether any one of the referenced objects is

stale based on the version information, wherein the par-
ticular object is updated based on the modified object if
none of the referenced objects is determined to be stale.

9. The method of claim 8,

wherein the particular object in the shared database is not

updated based on the modified object if any one of the
referenced objects is determined to be stale.

10. The method of claim 8, wherein the determining that
the referenced object is stale is based on a comparison of a
version identifier of the referenced object and a version iden-
tifier of an object in the shared database that corresponds to
the referenced object, wherein the version information
includes the version identifier of the referenced object.

11. The method of claim 8, further comprising:

providing error information if at least one of the referenced

objects is stale, wherein the error information includes
an identification of the at least one referenced object that
is stale.

12. The method of claim 11, wherein the error information
includes version information associated with at least one
object in the shared database, wherein the at least one object
in the shared database corresponds to the at least one refer-
enced object identified in the error information as stale.

13. The method of claim 8, wherein the modified object
was derived, at least in part, based on the one or more refer-
enced objects.

14. The method of claim 8, wherein the update request is
received from a distributed server.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

15. The method of claim 8, wherein the error information
indicates at least one other referenced object of the one or
more referenced objects is stale.
16. A method comprising:
sending a request to update a shared database based on a
first modified object, wherein the first modified object
was derived using one or more referenced objects;

receiving error information indicating a referenced object
of the one or more referenced objects is stale if a com-
parison of the referenced object to an up-to-date version
of the referenced object indicates the referenced object
is stale;

receiving the up-to-date version of the referenced object if

the referenced object is stale; and

sending a second request to update the shared database

based on a second modified object, wherein the second
modified object was derived using at least the up-to-date
version of the referenced object.

17. The method of claim 16, further comprising:

receiving a new version identifier of the second modified

object; and

associating the new version identifier with the second

modified object in a local cache of a distributed server.

18. The method of claim 17, wherein the request to update
the shared database includes an identification of the one or
more referenced objects and version information associated
with the one or more referenced objects.

19. The method of claim 18, wherein the version informa-
tion includes one or more version identifiers associated
respectively with the one or more referenced objects.

20. The method of claim 16, wherein the error information
includes an identification of the referenced object that is stale
and version information of the up-to-date version of the ref-
erenced object.

21. An apparatus comprising:

at least one processor; and

at least one memory element comprising instructions that

when executed by the at least one processor cause the

apparatus to:

send a request to update a shared database based on a
first modified object, wherein the first modified object
was derived using one or more referenced objects;

receive error information indicating a referenced object
of the one or more referenced objects is stale if a
comparison of the referenced object to an up-to-date
version of the referenced object indicates the refer-
enced object is stale;

receive the up-to-date version of the referenced object if
the referenced object is stale; and

send a second request to update the shared database
based on a second modified object, wherein the sec-
ond modified object was derived using at least the
up-to-date version of the referenced object.

22. The apparatus of claim 21, the at least one memory
element comprising further instructions that when executed
by the at least one processor cause the apparatus to:

receive a new version identifier of the second modified

object; and

associate the new version identifier with the second modi-

fied object in a local cache of a distributed server.

23. The apparatus of claim 22, wherein the request to
update the shared database includes an identification of the
one or more referenced objects and version information asso-
ciated with the one or more referenced objects.

US 9,361,334 B2
15

24. The apparatus of claim 21, wherein the error informa-
tion includes an identification of the referenced object that is
stale and version information of the up-to-date version of the
referenced object.

16

